Validation of semi-analytical, semi-empirical covariance matrices for two-point correlation function for Early DESI data

نویسندگان

چکیده

Abstract We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function (2PCF) on simulated catalogs representative Luminous Red Galaxies (LRG) data collected during initial two months operations Stage-IV ground-based Dark Energy Spectroscopic Instrument (DESI). run pipeline multiple Zel’dovich (EZ) mock galaxy with corresponding cuts applied and compare results sample to assess accuracy its fluctuations. propose extension previously developed formalism processed standard reconstruction algorithms. consider methods comparing in detail, highlighting their interpretation statistical properties caused by variance, particular, nontrivial expectation values certain metrics even when external estimate is perfect. With improved mocks techniques, we confirm a good agreement between our predictions covariance. This allows one generate comparable datasets without need create numerous matching clustering, only requiring 2PCF measurements from itself. The code used this paper publicly available at https://github.com/oliverphilcox/RascalC.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

validation of empirical and semi-empirical net radiation models versus observed data for cold semi-arid climate condition

introduction: solar net radiation (rn) is one of the most important component which influences soil heat flux, evapotranspiration rate and hydrological cycle. this parameter (rn) is measured based on the difference between downward and upward shortwave (sw) and longwave (lw) irradiances reaching the earth’s surface. field measurements of rn are scarce, expensive and difficult due to the instrum...

متن کامل

Semi-tied covariance matrices

A standard problem in many classification tasks is how to model feature vectors whose elements are highly correlated. If multi-variate Gaussian distributions are used to model the data then they must have full covariance matrices to accurately do so. This requires a large number of parameters per distribution which restricts the number of distributions that may be robustly estimated, particular...

متن کامل

semi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method

در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...

15 صفحه اول

Factored Semi-Tied Covariance Matrices

A new form of covariance modelling for Gaussian mixture models and hidden Markov models is presented. This is an extension to an efficient form of covariance modelling used in speech recognition, semi-tied covariance matrices. In the standard form of semi-tied covariance matrices the covariance matrix is decomposed into a highly shared decorrelating transform and a component-specific diagonal c...

متن کامل

Semi-tied Full-covariance Matrices for Hidden Markov Models

There is normally a simple choice made in the form of the covariance matrix to be used with HMMs. Either a diagonal covariance matrix is used, with the underlying assumption that elements of the feature vector are independent, or a full or block-diagonal matrix is used, where all or some of the correlations are explicitly modelled. Unfortunately when using full or block-diagonal covariance matr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monthly Notices of the Royal Astronomical Society

سال: 2023

ISSN: ['0035-8711', '1365-8711', '1365-2966']

DOI: https://doi.org/10.1093/mnras/stad2078